Geographic gradients of forest biomass of two nee-dled pines on the territory of Eurasia

Vladimir Andreevich Usoltsev, Seyed Omid Reza Shobairi, Viktor Petrovich Chasovskikh



On the basis of the compiled database in a number of 3020 sample plots with determinations of forest biomass of two-needled pines (subgenus Pinus) on theterritory ofEurasia fromGreat Britain to southernChina andJapan statistically significant transcontinental gradients of stem, roots, aboveground and total biomass are established. In the direction from North to South these biomass components change according to a bell-shaped curvewith a maximum in the third (the southern temperate) zonal belt, while the biomass of needles, branches and understory is monotonically increasing within this zonal gradient from subarctic to subequatorial zonal belts. In the direction from the Atlantic and Pacific coasts to the continentality pole inSiberia there is a biomass decrease as of all components of the wood story and the understory. The root: shoot ratio increases in the range between subarctic and southern temperate zone from 12 to 22% and then decreases to 16% in the subtropical zone, and within the southern temperate zone it monotonically increases from 20% on the oceanic coasts to 23% near continentality pole. The ratio of understory biomass to wood story biomass reduced from 4.0 to 2.5% ranging from subarctic to southern temperate zone and then rises to 3.5% in the subtropical zone, and within the south temperate zone it monotonically decreasing from the maximum value of 22% near Atlantic and Pacific coasts, approaching the level of 2-3% near the continentality pole. The results can be useful in the management of biosphere functions of forests undoubtedly.


Phytogeography; Pine Forests; Natural Zones; Climate Continentality Index

Full Text:



Alisov B.P. & Poltaraus B.V., 1974, Klimatologiya (Climatology). M.V. Lomonosov Moscow State University, Moscow: 1- 300.

Anderson K.J., Allen A.P., Gillooly J.F. & Brown J.H., 2006,Temperature-dependence of biomass accumulation rates during secondary succes-sion. Ecology Letters 9: 673-682.

Bazilevich N.I. & Rodin L.E., 1967, Schematic Maps of Productivity and Biological Turnover of Elements in the main Types of Land vegeta-tion. Izvestiya Vsesoyuznogo Geograficheskogo Obshchestva 99(3): 190-194.

Grigoriev А.А. & Budyko М.I., 1956, On the periodic law of geographical zoning. Doklady Akadimii Nauk SSSR 110(1): 129-132.

Huston M.A. & Wolverton S., 2009, The global distribution of net primary production: resolving the paradox. Ecological Monographs 79(3): 343–377.

Khromov S.P., 1957, K voprosu o kontinental’nosti klimata (To a problem of climate continentality). Izvestiya Vsesoyuznogo Geograficheskogo Obshchestva 89(3): 221-225.

Komarov V.L., 1921, Meridional’naya zonal’nost’ organizmov (Meridional zonality of organisms), Dnevnik I vserossiiskogo sezda russkikh botanikov v Petrograde (Diary of the 1st All-Russian Congress of Russian botanists in Petrograd) 3: 27-28.

Lavrenko E.M., Andreev V.N. & Leont’ev V.L., 1955, Profil’ productivnosti nadzemnoi chasti prirodnogo rastitel’nogo pokrova SSSR ot tundr k pustynyam (Productivity profile of aboveground part of natural plant cover from tundras to deserts in the USSR). Botanicheskii Zhurnal 40(3): 415-419.

Lieth H., 1974, Modeling the Primary Productivity of the World. Ekologiya 2: 13-23.

Lieth, H., 1974a, Modeling the primary productivity of the world. Interna-tional Section for Ecol. Bulletin 4: 11-20.

Lieth, H., 1974b, Modelling of the primary production of the Earth. Soviet Journal of Ecology 2: 13-23.

Luyssaert S., Inglima I., Jung M., Richardson A.D., Reichstein M., Papale E. D., Piao S. L., Schulze E.-D., Wingate L., Matteucci G., Aragao L., Aubinet M., Beer C., Bernhofer C., Black K.G., Bonal D., Bonne-fond J.-M., Chambers J., Ciais P., Cook B., Davis K.J., Dolman A.J., Gielen B., Goulden M., Grace J., Granier A., Grelle A., Griffis T., Grünwald T., Guidolotti G., Hanson P.J., Harding R., Hollinger D.Y., Hutyra L.R., Kolari P., Kruijt B., Kutsch W., Lagergren F., Laurila T., Law B.E., LeMaire G., Lindroth A., Loustau D., Malhi Y., Mateus J., Migliavacca M., Misson L., Montagnani L., Moncrieff J., Moors E., Munger J.W., Nikinmaa E., Ollinger S.V., Pita G., Rebmann C., Roupsard O., Saigusa N., Sanz M.J., Seufert G., Sierra C., Smith M.-L., Tang J., Valentini R., Vesala T., Janssens I.A., 2007, CO2 balance of boreal, temperate, and tropical forests derived from a global data-base. Global Change Biology 13: 2509-2537.

Nazimova D.I., 1995, Climatic ordination of forest ecosystems as a basis of their classification. Lesovedenie 4: 63-73. (

Oleksyn J., Reich P.B., Chalupka W. & Tjoelker M.G., 1999, Different above- and belowground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scand. J. For. Res. 14: 7-17.

Rosenzweig M.L., 1968, Net primary productivity of terrestrial communities: Prediction from climatological data. The American Naturalist 102(923): 67-74. (

Shi F., Sasa K. & Koike T., 2010 Characteristics of larch forests in Daxingan mountains, Northeast China, [in:] A. Osawa, O.A. Zyryanova, Y. Matsuura, T. Kajimoto, R.W. Wein (eds.), Permafrost Ecosystems: Siberian Larch Forests. Ecological Studies Vol. 209. Springer, Dor-drecht, Heidelberg, London, New York: 367-383.

Tolmachev А.I., 1962, Fundamentals of habitats: an introduction to plant horology. State University Publishing Leningrad: 1-100.

Usoltsev V.A., 2001, Forest biomass of Northern Eurasia: database and geography, Scientific issue. Ural Branch of Russian Academy of Sci-ences, Yekaterinburg: 1-708.

Usoltsev V.A., 2007, Biological productivity of Northern Eurasia’s forests: methods, datasets, applications. Ural Branch of Russian Academy of Sciences, Yekaterinburg: 1-637.

Usoltsev V.A., 2010, Forest biomass and primary production database for Eurasia. Ural Branch of Russian Academy of Sciences, Yekaterin-burg: 1-570. (

Usoltsev V.A., 2013a, Forest biomass and primary production database for Eurasia, CD-version. The second edition, enlarged and re-harmonized. Ural State Forest Engineering University, Yekaterinburg. (

Usoltsev V.A., 2013b, Geography of biological productivity of cedar pine ecosystems in Asia. Ecо-Potential 1-2: 47-67. (

Usoltsev V.A., Chasovskikh V.P., Noritsina Y.V., Kokh E.V., 2016, Methods and results of studying the geographical trends in the struc-ture of single-tree biomass of larches and two-needled pines in Eura-sia Russ. J. Ecol. 47(5): 442-452.

Partnerzy platformy czasopism