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Abstract 

 

The Smoothed Particle Hydrodynamics (SPH) is a 
fully Lagrangian, grid-free technique for fluid-flow 
simulations. An important and open issue in the SPH is a 
proper implementation of the incompressibility constraint. 
Generally there are two ways to deal with this problem. 
The first Weakly Compressible SPH (WCSPH) is the most 
widespread technique. It involves governing equations 
closed by a suitably-chosen equation of state. The second, 
Truly Incompressible SPH (ISPH), utilizes Projection 
Method – the technique known from the grid methods. The 
purpose of the present study is quantitative comparison of 
both techniques.  

 

 

1. Introduction 
The Smoothed Particle Hydrodynamics 

(SPH) is a fully Lagrangian, particle-based 
technique for fluid-flow computations. In 
the early stage it was developed by 
Monaghan to simulate astrophysical 
phenomena [1], but nowadays, the SPH is 
increasingly often used for flows with 
interfaces and common in geophysical and 
astrophysical applications. The main 
advantage over Eulerian techniques is no 
requirement of the numerical grid, therefore 
there appears a spark of hope that the SPH 
method performs more accurate for 
complex geometries or multi phase flows. 
An important open issue in the SPH is a 
proper implementation of incompressibility 
constraint. In the present study, two 

different implementations are considered. 
The first is Weakly Compressible SPH 
(WCSPH), which is the most common 
technique. It involves the standard set of 
governing equations closed by a suitably-
chosen, artificial equation of state. The 
second implementation is performed by a 
truly compressible formulation based on 
the Projection Method (sec. 4.2). In this 
approach Incompressible Predictor-
Corrector (IPC) scheme is utilized. The 
common field of the research in the SPH is 
proper implementation of boundaries. Due 
to the incompressibility all the instabilities 
generated on the boundary quickly spread 
over all domain. In the present study, 
among many implementations, the ghost-
particle boundary technique is applied. This 
approach involves the use of fictitious 
external particles that are mirrored by the 
fluid particles in the interior. The main 
advantages of this method are simplicity 
and conformity with different phases of the 
fluid [3]. 

 

2. SPH formulation 
The main idea behind SPH is to 

introduce kernel interpolants for flow 
quantities so that the fluid dynamics is 
represented by particle evolution equations. 
The SPH technique is composed of two 
approximations.     
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 The first is interpolation of the fields 
at a point. To construct it, we utilize an 
integral interpolant AI(r) of any field A(r) 

 

����� =  � ���	�
�� − �	, ℎ���	,
�

 

�2.1� 
 

where, the integration is over all the 
domain. W is a weighting function (kernel) 
with a h, parameter (smoothing length) that 
can be treated as linear dimension of kernel. 
Generally, the kernel should posses the 
symmetrical form 

 


��, ℎ� =  
�−�, ℎ�              �2.2� 

 

and enjoy following properties: 

 

lim�→� 
��, ℎ� = ����,                 �2.3� 

 

where δ(r) is the Dirac delta and should be 
normalized so that 

 

� 
��, ℎ��� = 1.�                   �2.4� 

 

The additional condition is W in Cn where 
n>0 and at least as many times differentable 
as the field A is. There are numerous 
possibilities to choose the kernel. Due to the 
computational effort and proper 
implementation of boundaries (sec. 5), we 

decided to utilize the compact, quintic form 
(two-dimensional flows) 

 


��, ℎ� = �
� �! "1 − #

$%� �2& + 1�   �2.5� 

 

where: 

& = |�|
� .                           �2.6� 

 

The second approximation of the SPH 
technique is discretization of space. It is 
done through dividing the domain into a 
fine-grained representation (particles). Each 
particle carries the properties of the field. 
The integral interpolant (2.1) becomes the 
summation interpolant 

 �+��� = ∑ ���-�
�� − �- , ℎ�Ω/,-    �2.7� 

 

where ra and Ωa denote the position and 
volume of the particle a. The SPH task 
consists in computing foregoing interpolant 
at each particle (Fig. 1), so that Eq. (2.7) may 
be rewritten into the common form 

Figure 1. Set of neighboring particles. Due to the range of 
finite support (compact) kernel, only black particles 

interact with the white one. 
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 �- = ∑ �1
-1�ℎ�Ω2,1        �2.8� 

 

where: 

�- =  ���-�                      �2.9� 

and 


-1�ℎ� = 
��- − �1 , ℎ�.       �2.10� 

 

 An additional quality of the SPH 
reveals with differentiation of the fields. In 
accordance with (2.1), the gradient of  A(r) 
assumes the form 

 

∇���� =  � ∇���	�
�� − �	���	.� �2.11� 

 

Taking the advantage of the integration by 
parts rule and utilizing kernel symmetry, 
we can transform foregoing equation into 

 

∇���� = ���	�
�� − �	 7�| 8�   
   + � ���	�∇
�� − �	���	.�         �2.12� 

 

Generally, the first term does not 
necessarily vanish for finite systems. The 
common way is to remove this term and 
deal with the boundaries explicitly. The 
SPH form (discretization) of (2.11) brings 
the common rule 

 ∇�- = ∑ �1∇
-1�ℎ�Ω2.1         �2.13� 

 

Since the nabla operator acts only on the 
kernel, the gradient of the field is 
dependent only on the values of the fields 
at particles, not gradients. 

 The way of obtaining higher 
derivatives is straightforward. The 
Laplacian operator which acts on field A(r) 
has the form 

 

∆�- = : : �;∇
-1�ℎ�∇
1;�ℎ�Ω2Ω<
;

.
1

 

�2.14� 
 

However, due to the accuracy and 
efficiency, commonly utilized form is built 
as a combination of the finite difference 
approach and the SPH [4][5] (Sec. 3). 

 

3. Governing equations 
The full set of governing equations for 

incompressible viscous flow is composed of 
the Navier-Stokes equation 

 =>
=? = − @

A ∇B + ∇�C∇>� + D,     �3.1� 

 

where ρ is the density, u the velocity vector, 
t the time, p the pressure, ν the kinematic 
viscosity and f an external force, and the 
divergence-free constraint 

 

∇> = 0.                             �3.2� 
 

Equation (3.1) arises from applying the 
Newton’s Second Law to fluid motion with 
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assumption that the fluid stress is the sum 
of viscous  and pressure terms. The 
continuity equation (the conservation of 
mass) has the form 

 =A
=? = −E∇>.                       �3.3� 

 

In the case of incompressible flow, density E 
is constant, therefore Eq. (3.3) arises to the 
form (3.2). 

 The whole set of governing 
equations should be expressed in the SPH 
approach. Utilizing relation (2.12), 
divergence of velocity takes the SPH form 

 ∇>- = ∑ >1∇/1 
-1�ℎ�Ω2.       �3.4� 

 

Therefore, the continuity equation (3.3) has 
the form 

 =AF
=? = −E- ∑ >1∇/1 
-1�ℎ� GH

AH ,   �3.5� 

 

where 

 GH
AH = Ω2.                      �3.6� 

 

It is important to note that various ways to 
express divergence exist, for example, using 
the identity 

 

∇> ≡ @
A �∇�E>� − >∇E�.        �3.7� 

 

Combining (3.3) with (3.7) leads to the 
different SPH form 

 =AF
=? = ∑ J1>-1∇/1 
-1�ℎ�,    �3.8� 

 

where uab=ua-ub. The advantage of the above 
form over (3.5) is the symmetry with 
swapping particles a and b. Therefore, in 
practice, it is more accurate to use (3.8)  [8]. 
However, there exists an alternative 
formulation. The fluid density can be 
computed directly from the SPH formula 
(2.8) 

 

E- = : E1
1


-1�ℎ�Ω2 = : J1
1


-1�ℎ�. 
�3.9� 

 

A practical disadvantage of this approach is 
that E must be evaluated by summing over 
the particles before other quantities [9]. 
Therefore it increases the computational 
effort. 

 The right hand side of the Navier-
Stokes equation (3.1) contains three 
elements: pressure, viscous and external 
force term. In the SPH technique the 
pressure term is responsible for ensuring 
the incompressibility constraint (Sec. 4). 
Utilizing (2.12) it takes the form 

 1
E- ∇/B- = 1

E- : B1∇/
1


-1�ℎ� J1E1 . 
�3.10� 
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Similarly to the continuity equation (3.5) it 
is more accurate to use another form. 
Utilizing the identity 

 

∇B ≡ E K∇ KB
EL + B

E$ ∇EL, 
�3.11� 

 

the gradient of pressure can be expressed as 

 

1
E- ∇-B- = 1

E- : J1 K B-E-$ + B1E1$L ∇-
1


-1�ℎ�. 
�3.12� 

 

This form ensures angular momentum 
conservation [1]. 

 The viscous term, as mentioned in  
Sec. 2, is built as a combination of the finite 
difference approach and the SPH. For 
present work, we utilize the form [5] 

 

∇�C-∇>-� 

= 8 : J1 MC- + C1E- + E1
>-1�-1�-1$ + N$O ∇/

1

-1�ℎ�. 

�3.13� 

 

Since the SPH is fully Lagrangian approach, 
the particle equation of motion completes 
the system 

 =�F
=? = >- .                      �3.14� 

4. Incompressibility treatment 

Generally, there are two techniques to 
assure the incompressibility in the SPH. 

 

4.1 Weakly Compressible SPH 
The most common technique is 

WCSPH. It involves the set of governing 
equations closed by a suitably-chosen, 
artificial equation of state p=p(ρ).  Since 
fluid pressure is an explicit function of ρ, 
density gradient exerts an influence at 
particle motion. The commonly used 
equation of state has the form suggested by 
Batchelor [6] 

 

B = ;!AP
Q R" A

AP%Q − 1S,              �4.1� 

 

where reference density ρ0, numerical 
sound speed c and parameter γ are suitably-
chosen to reduce the density fluctuation 
down to 1%. For present work we keep γ=7 
and c at the level minimum 10 times higher 
than the maximal fluid velocity. Since, 
assuring incompressibility constraint, the 
sound speed is high, the time step should 
be very small. This is the potential 
weakness of the WCSPH. 

 

 

4.2. Truly Incompressible SPH 

The newest promising technique is 
truly Incompressible SPH (ISPH). It is based 
on the Projection Method – common 
approach for numerically solving time-
dependent incompressible fluid-flow 
problems. In this technique the pressure 
needed to ensure incompressibility is found 
by projecting calculated velocity field onto 
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the divergence-free space [4]. It is possible 
due to the Helmholtz decomposition which 
states: every vector field A, that is twice 
continuously differentable and vanishes 
faster than 1/r at infinity, can be 
decomposed into gradient and curl as 
follows [7] 

 T =  ∇ϕ +  ∇ × W = Tcurl free + Tdiv free, 
�4.2� 

where _ and W are suitably chosen and 

 ∇Tdiv free =  ∇�∇ × B� = 0, 
∇ × Tcurl free = ∇ × �∇ ϕ� = 0.         �4.3� 

 

In the ISPH, decomposition procedure 
begins with splitting the Navier-Stokes 
equation (3.1) into two parts. The first, so-
called predictor step gives the fractional 
velocity u* 

 
>∗b>c

d? = ∇�C∇>� +  D.       �4.4� 

 

This equation excludes the influence of the 
pressure p – we treat pressure as non-
physical quantity. Therefore in this 
approach all real, physical pressure forces 
are enclosed in the f term. The second part 
of the procedure is the correction step 

 
>cefb>∗

d? = − @
A ∇Bgh@.         �4.5� 

 

It imposes the correction to u* for ensuring 
compliance with the divergence-free 
constraint. On the way to obtain an 

appropriate quantity pn+1  we write the 
divergence of Eq. (4.5) (projection into 
divergence-free space) 

 

∇ ">cefb>∗
d? % = ∇ "− @

A ∇Bgh@%.  �4.6� 

 

Since we expect divergence-free velocity 
field, we have divun+1=0. Therefore, the 
formula (4.6) leads to the Poisson equation 

 

∇ "@
A ∇Bgh@% = ∇>∗

d? .              �4.7� 

 

Now, the correction step (4.5) performed 
with pn+1 obtained from above relation, 
gives the divergence-free velocity field at 
the next time step. 

 

4.2.1 The Particle Poisson Solver 
Since the SPH is a particle-based 

method, there exists specific treatment of 
the Poisson equation. Instead of solving Eq. 
(4.7) on a regular grid, we may approximate 
the Laplacian operator with the same form 
as a viscous term (3.13) in the Navier-Stokes 
equation (see Cummins and Rudman [2]). In 
this concept the Poisson equation is solved 
on irregular grid of Lagrangian points 
(particles). But since the authors of the 
paper [14] report that the Particle Poisson 
Solver (PPS) has the order of 1/2 and the 
order decreases increasing the number of 
particles in the system, for further work, we 
decided to utilize the Poisson solver on a 
regular grid. 
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5. Boundary condition 
The proper implementation of the 

boundaries is one of the most common 
subjects of the SPH research during recent 
years. Early stage applications of WCSPH 
involved high Reynolds number 
simulations with free-slip boundaries. It 
was performed using one layer of the 
boundary particles placed on the wall, 
which exert strong repulsive force to 
prevent from penetrating solid surfaces 
[10]. Since the number of interacting 
particles near the walls is decreased, the 
accuracy of numerical scheme degrades. 
Another treatment was proposed by 
Campbell [11]. The boundary condition was 
included already in Eq. (2.11) through the 

residual term. Today, generally, the most 
often used boundary condition utilizes 
dummy particles [12]. In this approach, 
virtual boundary particles are regularly 
distributed according to initial 
configuration of the particles and have zero 
velocity during whole simulations (no-slip 
condition). Other popular virtual-particle 
based boundary conditions utilize mirror 
particles. These particles in opposition to 
dummy particles, have suitably chosen non-
zero velocity. Nowadays, there are two 
commonly used mirror-particle approaches. 
The first, developed by Morris [9], consists 
in the combination of dummy and mirror 
particles. The velocity of fluid particles is 
suitably projected on fixed boundary 
particles. The second approach so-called 
Multiple Boundary Tangent (MBT) method 
is similar to the previous but the way of 
projection particles’ velocities is different. 

 Presented mirror-particle 
techniques, was developed to improve 
another, more natural approach – the ghost 
particle method. This technique is similar to 
the Classic Image Problem in electrostatics 
[7]. To any particle a located at ra near the 
straight infinite boundary, we introduce the 
image a’ of this particle with the following 
properties: 

�-	 = 2i + �- , >-	 = 2>j − >- , 
J-	 = J- ,                         �5.1� 

E-	 = E- , 
B-	 = B- , 

where uw is the velocity of the boundary 
and d is a vector between the particle and 
the nearest point at the wall. Described 
construction is presented in Fig. 2a. Since 
chosen kernel is compact, the boundary 
may be finite. The role of these particles is 

Figure 2. The ghost-particle boundary scheme. 
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to assure high accuracy of the computation 
(to replenish the lack of particles near the 
boundaries) and to enforce the boundary 
condition for velocity (no-slip), density and 
pressure. 

 Another case that can be treated 
with ghost-particle boundary approach is 
an inner corner. The technique of 
constructing particles’ images is presented 
in Fig. 2b. In this case we have to use three 
mirror particles with the following 
properties 

 

�-	 = 2i + �- , 
�-		 = 2i	 + �- , 

�-			 = 2i + 2i	 − �- , 
>-	 = 2>j − >- , 

>-		 = −>-,                     �5.2� 

>-			 = >- , 
J-	 = J-		 = J-			 = J- , 

E-	 = E-		 = E-			 = E- , 
B-	 = B-		 = B-			 = B- . 

 

It is important to note that the influence 
range of this corner is smaller than 2h. For 
larger distance from the corner, the 
boundary condition get back to the 
previous case (both in vertical and 
horizontal direction).  

 

6. Results 
In the present study, we describe two 

flows which are commonly utilized as 
numerical algorithms’ tests: the Couette flow 
and the lid-driven cavity. In both of them, the 

domain contains 3600, 1600 and 400 
particles placed homogeneously at the 
beginning of the simulations. 

Limiting the time of computation, we 
obtain the density in the WCSPH with the 
formula (3.8). In the ISPH, the Poisson 
solver (4.7) is performed on the regular 
mesh with the number of nodes equal to the 
one quarter of particles’ number. For the 
present work we utilize the five-point 
iterative solver. 

As a quantitive measurement of 
incompressibility we compute the mean 
density <ρ(t)> and the root mean square of 
density fluctuations RMS(ρ(t)) both 
performed on regular sets of nodes. The 
RMS  coefficient  is defined as 

 

klm�E�n�� = o@
p ∑ �Eq − 〈Eq〉�$pqt@ ,   �5.3� 

where N denotes the number of nodes. For 
the present work, this number is equal to 
the number of particles. The higher values 
of RMS(ρ(t)) coefficient stand for higher 
variations of density and, therefore, larger 
departures from the incompressibility.
 All the quantities (except the CPU 
time) are expressed in a non-dimensional 
form. 

Figure 3. Scheme of the Couette flow. 
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Figure 4. The velocity profiles and local deviation of Couette flow obtained with Weakly Compressible SPH (WCSPH) 
and Truly Incompressible SPH (ISPH) for  particles. Solid line presents the exact solution Eq. (6.6). 

 

6.1 Couette flow 

 

The Couette flow is classic, and simple, and 
due to the analytic solvability grateful for 
testing the numerical simulations. It 
involves viscous laminar flow between two 
parallel plates fixed at y=0 and y=L where 
one of them moves with constant velocity w 
in the x direction. Scheme of the Couette flow 
is presented in Fig. 3. The solution of the 
velocity field can be obtained by solving the 
Navier-Stokes equation (3.1). Since, due to 
the symmetry, the velocity field is not 
depended on the x direction, the steady 
state solution reduces Eq. (3.1) into the form 

 

 

∆uvex�x� = 0.                   �6.1� 

 

Integrating twice, we obtain 

 

uvex�x� = �x + y,               �6.2� 

 

where A and B are constants that can be 
obtained using boundary conditions: 

 

 uv�0� = 0, 
uv�z� = {.                       �6.3� 



 

 

 

Bringing into play above conditions, the 
steady-state solution of the Couette flow
arises into the form 

uvex�x� � j
| x.                      

 

Time-dependent solution can be obtained 
utilizing a series formula. It takes following 
form 

uvex�x, n� � j
| x ' ∑

V sin "g �
| % exp "b�

= The Reynolds number 
measure of the ratio of inertial forces to 
viscous forces is defined as 

k� � �|
� ,                         

 

Figure 5. The density mean value and RMS coe
ISPH technique.  Parameter 
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Bringing into play above conditions, the 
the Couette flow 

 

                      �6.4� 

dependent solution can be obtained 
lizing a series formula. It takes following 

 

∑ $j
g ��1�g�gt@ V     

" �g! !

|! n%.     �6.5� 

he Reynolds number that gives a 
measure of the ratio of inertial forces to 

 

                         �6.6� 

where ν, L and v are characteristic velocity, 
length and kinetic viscosity of considered 
flow. For the present test, the velocity of 
upper boundary was 
viscosity ν=1 and the distance between 
bottom and top boundary L=1.
the Reynolds number is equal to 1.

 

 The results of SPH simulations are 
presented in Fig. 4. To compare the 
accuracy of SPH implementations, we 
introduce the local deviation function
as 

�uv�xq
g� � |uv�xq

g

where uex(yin) is the exact solution of 
Couette flow (Eq. (6.6)) at position 
timesteps. As we can see (fig. 4), the 
accuracy of velocity in the WCSPH as
as in the ISPH is at similar level. Since 
Couette flow in our case is driven only by the 
upper boundary and the geometry is 
simple, the stream lines are parallel. 
Therefore, due to the lack of outer, real 

mean value and RMS coefficient obtained for the Couette flow (Re=1)  performing: a) WCSPH and b) 
ISPH technique.  Parameter N denotes the number of particles in the domain.
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are characteristic velocity, 
length and kinetic viscosity of considered 
flow. For the present test, the velocity of 
upper boundary was w=1, the kinetic 

and the distance between 
bottom and top boundary L=1. Therefore, 

is equal to 1. 

The results of SPH simulations are 
presented in Fig. 4. To compare the 
accuracy of SPH implementations, we 

the local deviation function, defined 

 
� g� � uvex�xq

g�|,    �6.7� 

 

) is the exact solution of the 
(Eq. (6.6)) at position x, after � 

timesteps. As we can see (fig. 4), the 
accuracy of velocity in the WCSPH as well 
as in the ISPH is at similar level. Since the 

in our case is driven only by the 
upper boundary and the geometry is 
simple, the stream lines are parallel. 
Therefore, due to the lack of outer, real 

performing: a) WCSPH and b) 
in the domain. 



 

pressure forces, the pressure term in the
Navier-Stokes equation does not provide 
significant influences. Due to this 
properties, the RMS of density (fig. 5), in 
both techniques, is at the similar, extremely 
small level. After t=0.2, when we obtains 
the steady-state solution, the RMS of 
density became stable around 
initial density. Even the varying number of 
particles doesn’t radically change the RMS 
coefficient.  

 The comparison of computational 
times, presented in Fig. 6, suggests a greater 
efficiency of the WCSPH. But as was 

Figure 6. The CPU times to obtain steady
solution of the Couette flow 

Figure 7. The scheme of the lid-driven cavity.
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pressure forces, the pressure term in the 
Stokes equation does not provide 

significant influences. Due to this 
properties, the RMS of density (fig. 5), in 
both techniques, is at the similar, extremely 

, when we obtains 
state solution, the RMS of 

became stable around 0.7‰ of 
initial density. Even the varying number of 
particles doesn’t radically change the RMS 

The comparison of computational 
times, presented in Fig. 6, suggests a greater 
efficiency of the WCSPH. But as was 

mentioned above, since there is no internal 
forces (Navier-Stokes pressure term) in 
Couette flow, the equation of state (4.1) in the 
case of WCSPH and the correction step (4.5) 
with Poisson solver (4.7) in ISPH, are 
useless. Therefore, these parts of algorithm
take up the CPU time only. Since the CPU 
time utilized by Eq. (4.1) is negligible in the 
comparison with solving Eq. (4.7), the 
WCSPH and ISPH computational time 
difference is the utilization of CPU time by 
the Poisson solver.  

 

6.2 Lid-driven cavity flow

 The lid-driven cavity
common test of numerical algorithms for 
viscous flows. It involves fluid
square (LxL) box (presented on Fig. 7) 
where only one boundary moves with the 
velocity w. The geometry is very simple, 
however there is no analytical solution. For 
our tests we computed 
at Re=1000. All the results obtained in the 
present work are compared to the results of 
numerical calculation on a fine grid 
performed on the Eulerian
Ghia et al. [13]. Due to the sound speed 
constraint in the WCSPH technique, the 
necessary time step  was δt=0.325
the Incompresible SPH 
enough.  

 The steady-state velocity profiles for 
both methods are presented in Figs. 8 and 9. 
As we can see, the profiles obtained via the 
ISPH and the WCSPH are similar. 
However, for N=3600
technique are closer to the results obtained 
by Ghia et al., then performed via WCSPH.  
Another situation takes a place for
For this case, the WCSPH s
more accurately.  

obtain steady-state (t=0.25) 
 (Re=1). 

driven cavity. 
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d above, since there is no internal 
Stokes pressure term) in the 

, the equation of state (4.1) in the 
case of WCSPH and the correction step (4.5) 
with Poisson solver (4.7) in ISPH, are 
useless. Therefore, these parts of algorithm 
take up the CPU time only. Since the CPU 
time utilized by Eq. (4.1) is negligible in the 
comparison with solving Eq. (4.7), the 
WCSPH and ISPH computational time 
difference is the utilization of CPU time by 

driven cavity flow 

driven cavity is a very 
common test of numerical algorithms for 

flows. It involves fluid-flow inside a 
square (LxL) box (presented on Fig. 7) 
where only one boundary moves with the 

. The geometry is very simple, 
s no analytical solution. For 

our tests we computed the lid-driven cavity 
All the results obtained in the 

present work are compared to the results of 
numerical calculation on a fine grid 
performed on the Eulerian-flow solver by 

. Due to the sound speed 
constraint in the WCSPH technique, the 
necessary time step  was δt=0.325·10-4. For 

SPH δt=0.325·10-2  is 

state velocity profiles for 
both methods are presented in Figs. 8 and 9. 

the profiles obtained via the 
ISPH and the WCSPH are similar. 

N=3600 particles, ISPH 
technique are closer to the results obtained 

, then performed via WCSPH.  
Another situation takes a place for N=400. 
For this case, the WCSPH seems to perform 



 

Comparing the RMS of density 
coefficient (Fig. 10) it is easy to observe that 
the WCSPH solver deals much more 
accurately with density field than the ISPH. 
The RMS of density coefficient, obtained for 
ISPH solver, stabilizes after 
Then, the RMS are equal: for 
particles about 4.5%, for N=1600
and for N=400 about 3% (sic!) of
density. The discrepancy between above 
values is caused by two factors: the number 
of particles and different numbe
in Poisson solver’s grid. The decreasing 
number of particles leads to higher errors of 
quantities but the decreasing number of 
nodes in Poisson solver smoothes out the 
density field.  The value of RMS coefficient 

Figure 8. The WCSPH lid driven cavity velocity

Figure 9. The ISPH lid
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Comparing the RMS of density 
coefficient (Fig. 10) it is easy to observe that 
the WCSPH solver deals much more 
accurately with density field than the ISPH. 
The RMS of density coefficient, obtained for 

after about t=4. 
Then, the RMS are equal: for N=3600 

N=1600 about 5.5% 
(sic!) of initial 

density. The discrepancy between above 
values is caused by two factors: the number 
of particles and different number of nodes 
in Poisson solver’s grid. The decreasing 
number of particles leads to higher errors of 
quantities but the decreasing number of 
nodes in Poisson solver smoothes out the 
density field.  The value of RMS coefficient 

in the case of WCSPH is much und
The difference in accuracy of density field 
between discussed methods is caused by 
the disparity in the time steps. The time 
step in the WCSPH is 100 times smaller 
than the time step chosen to perform the 
ISPH. 

Due to the above-mentioned disparity 
in the time steps, the CPU time of the 
driven cavity simulation 
ISPH method is about 20 times shorter than 
the same simulation performed with the 
WCSPH. The comparison of CPU times for 
both techniques is presented in Fig. 11. 

 

velocity profiles at t=55.0 against Ghia et al. results.  The results for
of particles in domain N are presented.  

lid-driven cavity velocity profiles at t=55.0 against Ghia et al. 
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in the case of WCSPH is much under 1%. 
difference in accuracy of density field 

between discussed methods is caused by 
the disparity in the time steps. The time 
step in the WCSPH is 100 times smaller 
than the time step chosen to perform the 

mentioned disparity 
n the time steps, the CPU time of the lid-

 computed by the 
ISPH method is about 20 times shorter than 
the same simulation performed with the 
WCSPH. The comparison of CPU times for 
both techniques is presented in Fig. 11.  

The results for different number 

Ghia et al. results. 



 

Conclusions 

In this paper the Couette flow
driven cavity flow have been simulated to 
compare the WCSPH and the ISPH 
techniques. In the considered
cavity test, accuracy of the velocity field is 
greater in the WCSPH than the ISPH in the 
case of small number of particles. When the 
number of particles increase, the accuracy 
of the ISPH technique increase faster than 
the WCSPH and for the number 

particles, the ISPH profiles are much closer 
to the reference results. The simulations of
the Couette flow uncover the numerical cost 
of the Poisson solver. Although the CPU 
time necessary to compute the Poisson 
equation is very high, the ISPH technique 
may perform with much larger timesteps 
(as in the case of the lid-driven cavity
after all the efficiency of the ISPH is much 
greater than the WCSPH. Of course, 
increasing length of the time step, the error 
of results increases too. Due to this effect, 
the lid-driven cavity results, obtained via the 
ISPH, are characterized by greater RMS of 
the density than in the case of the WCSPH. 

Figure 10. The density mean value an
a) WCSPH and b) ISPH technique.  Parameter 
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the Couette flow and the lid-
have been simulated to 

compare the WCSPH and the ISPH 
techniques. In the considered lid-driven 

test, accuracy of the velocity field is 
greater in the WCSPH than the ISPH in the 
case of small number of particles. When the 
number of particles increase, the accuracy 
of the ISPH technique increase faster than 
the WCSPH and for the number N=3600. 

particles, the ISPH profiles are much closer 
to the reference results. The simulations of 

uncover the numerical cost 
of the Poisson solver. Although the CPU 
time necessary to compute the Poisson 
equation is very high, the ISPH technique 
may perform with much larger timesteps 

driven cavity) and 
all the efficiency of the ISPH is much 

greater than the WCSPH. Of course, 
increasing length of the time step, the error 
of results increases too. Due to this effect, 

results, obtained via the 
ISPH, are characterized by greater RMS of 
the density than in the case of the WCSPH.  

 Further work may be undertaken to 
improve the ISPH technique. The utilization 
of faster Poisson solvers such as pre
conditioned Bi-CGSTAB is bound to get 
higher efficiency. Additional work is 
necessary to make quantitative comparison 
of the ISPH technique with the Poisson 
equation solved on grid and via PPS. 

Qualitatively new approach of the 
ISPH was suggested by 
Wawreńczuk in paper [15]. Besides the 

mean value and RMS coefficient obtained for the lid-driven cavity flow (Re=
a) WCSPH and b) ISPH technique.  Parameter N denotes the number of particles in the domain.

Figure 11. The CPU times to obtain
solution of the lid-driven cavity
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Further work may be undertaken to 
improve the ISPH technique. The utilization 
of faster Poisson solvers such as pre-

CGSTAB is bound to get 
higher efficiency. Additional work is 

uantitative comparison 
of the ISPH technique with the Poisson 
equation solved on grid and via PPS.  

Qualitatively new approach of the 
ISPH was suggested by Pozorski and 

in paper [15]. Besides the 

Re=1000)  performing:  
denotes the number of particles in the domain. 

obtain the steady-state (t=55.0) 
driven cavity (Re=1000). 
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correction term to a velocity field (4.5), they 
suggest  the second correction to a density. 
This approach still needs a further research. 
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